
漢德百科全書 | 汉德百科全书


基尔霍夫(Gustav Robert Kirchhoff,1824~1887)德国物理学家。1824年3月12日生于柯尼斯堡;1847年毕业于柯尼斯堡大学;1848年起在柏林大学任 教;1850~1854年在布累斯劳大学任临时教授;1854~1875年任海德堡大学教授;1874年起为柏林科学院院士;1875年重回柏林大学任理 论物理学教授直到1887年10月17日在柏林逝世。
当他21岁在柯尼斯堡就读期间,就根据欧姆定律总结出网络电路的两个定律(基尔霍夫电路定律),发展了欧姆定律,对电路理论作出了显著成绩。大学毕业 后,他又着手把电势概念推广到稳恒电路。长期以来,电势与电压这两个概念常常被混为一谈,当时都称为“电张力”。基尔霍夫明确区分了这两个概念,同时又指 出了它们之间的联系。
在光谱研究中,他与本生合作,开拓出一个新的学科领域──光谱分析,采用这一新方法,发现了两种新元素铯(1860年)和铷(1861年)。
1859年,他把食盐投人火焰,得到了强烈的钠亮线。如果再让阳光通过这一火焰投射到棱镜上,当阳光较弱时钠亮线依然存在,当太阳光强超过某一强度 时,亮线消失,在同一位置出现暗线。他从热力学角度对光的辐射与吸收进行了深入研究,为了能够从理论上阐明这个问题,他引人辐射本领、吸收本领、黑体等概 念,从而建立了热辐射定律。这项工作成为量子论诞生的契机。他大胆提出假设:太阳光谱中的暗线,是元素吸收的结果,该元素能够辐射与暗线同一波长的亮线。 应用这一原理于天体,就能确定外层空间的化学元素含量与分布。他用这一方法研究了太阳的组成,发现太阳所含元素与地球上的若干元素相同,促使天体物理学得 到发展。
他还讨论了电报信号沿圆形截面导线的扰动;对惠更斯-菲涅耳原理给出更严格的数学证明。
古斯塔夫·罗伯特·基尔霍夫(德语:Gustav Robert Kirchhoff,1824年3月12日—1887年10月17日),德国物理学家。在电路、光谱学的基本原理(两个领域中各有根据其名字命名的基尔霍夫定律)有重要贡献,1862年创造了“黑体”一词。1847年发表的两个电路定律发展了欧姆定律,对电路理论有重大作用。1859年制成分光仪,并与化学家罗伯特·威廉·本生一同创立光谱化学分析法,从而发现了铯和铷两种元素。同年还提出热辐射中的基尔霍夫辐射定律,这是辐射理论的重要基础。需要提供文献来源">此外基尔霍夫还研究了弹性体的振动、物体在流体中的运动、重性流体的流动和波动等一系列问题。
Die Archäogenetik befasst sich mit der Untersuchung von Erbmaterial der Menschen sowie der Tiere und Pflanzen, um Erkenntnisse über die Evolution zu gewinnen.[1] Es werden dabei Proben von Kulturpflanzen, Haustieren und Menschen berücksichtigt, die sowohl aus alter DNA von archäologischen Funden als auch von Lebewesen und Pflanzen heutiger Zeit stammen. Mit den Mitteln der Molekularbiologie lassen sich zum Beispiel vorgeschichtliche Vorgänge wie die Entstehung und Verbreitung der Landwirtschaft rekonstruieren. Geprägt wurde der Begriff Archäogenetik (Archaeogenetics) von Colin Renfrew.
古遗传学,是科林·伦弗鲁提出的一个术语,指的是利用分子技术中的应用人类基因技术来研究人类的过去。 这可以包括:
- 分析从考古遗留的DNA,比如古DNA。
- 从现代人群(包括人类和人类种植的植物和饲养的动物物种)来研究过去的人类和人类与生物交互所遗留的DNA
- 在考古资料上应用通过分子基因法研究出的统计方法。
这个主题有研究人类血液的起源,而这个经典的遗传标记实现了有关语言学和人类种族之间关系的信息。早期工作在这个领域包含了对卢德维克登、汉卡、威廉·博伊德和亚瑟。自20世纪60年代起,卢卡·卡瓦利-斯福扎用经典遗传标记,研究史前的欧洲人群,最终于1994年发表在人类基因的历史和地理。
自此,所有的人类种植的主要植物(如小麦,大米,玉米)和饲养的动物(如牛,羊,猪,马)的遗传史都被进行了分析。模型的时机和生物地理学他们的驯化和饲养随后陆续出台,主要是基于线粒体DNA变异,但其他标志物,目前正在分析,以补充遗传的叙述(如Y染色体用于描述男性的历史传承)。
同样的表达也被安东尼奥·阿莫林(1999年)使用并定义为:获取和解读基因来证明人类的历史。类似概念已经提出,莱纳斯·鲍林和埃米尔(1963年)研究了前DNA的时代。
15. Juni 1844: An diesem Tag im Jahr 1844 erhielt Charles Goodyear nach einem Jahrzehnt der Entbehrungen und der Beharrlichkeit ein Patent für vulkanisierten Gummi. Die ersten Stiefel und Kleidungsstücke aus Gummi hatten sich in der amerikanischen Umwelt schlecht bewährt. In der Hitze schmolzen sie und in der Kälte wurden sie rissig. Goodyear war entschlossen, einen Weg zu finden, Gummi stabil und biegsam zu machen, und zog mit seiner Familie nach Massachusetts, wo sich die ersten Gummifabriken des Landes befanden. Als eines seiner Experimente nach dem anderen scheiterte, verarmte seine Familie. Schließlich, an einem Wintertag im Jahr 1839, fand Goodyear eine Formel, die funktionierte. Es dauerte weitere fünf Jahre, aber 1844 ließ er das Verfahren patentieren. Charles Goodyear wurde zu einer Berühmtheit, und vulkanisierter Kautschuk wurde zu einem unauffälligen Bestandteil des täglichen Lebens.
固体力学是力学中研究固体机械性质的学科,连续介质力学组成部分之一,主要研究固体介质在温度、形变和外力的作用下的表现,是连续介质力学的一个分支。一般包括材料力学、弹性力学、塑性力学等部分。固体力学广泛的应用张量来描述应力、应变和它们之间的关系。
在固体力学中,线性材料模型的应用是最为广泛的,但是很多材料是具有非线性特性的,随着新材料的应用和原有材料达到它们应用之极限,非线性模型的应用愈加广泛。
- 塑性——如果施加的应力小于实际的结果,材料便呈现塑性,不能回复到初始状态。也就是说屈服之后的形变是永久性的。
- 弹性——当应力被移除后,材料恢复到变形前的状态。线性弹性材料的形变与外加的载荷成正比,此关系可以用线性弹性方程,例如:胡克定律,表示出来。
- 黏弹性——材料不仅具有弹性,而且具有摩擦。当应力被移除后,一部分功被用于摩擦效应而被转化成热能,这一过程可用应力应变曲线表示。
Die Mechanik fester Körper ist ein grundlegendes Teilgebiet der klassischen Mechanik, der Kontinuumsmechanik und der Experimentalphysik. Sie befasst sich mit der Bewegung von Festkörpern unter dem Einfluss äußerer Kräfte. Zu unterscheiden sind:
- der Idealfall nicht verformbarer, gänzlich starrer Körper. Zur Untersuchung werden diese mathematisch aus Massepunkten zusammengesetzt; die untersuchten Bewegungen sind vor allem Translationsbewegungen und Rotationen.
- die realen, elastisch oder plastisch verformbaren Festkörper. Hier kommt die Analyse von Schwingungen, Durchbiegungen und Verformungen hinzu.
Die Mechanik fester Körper, als dessen Gegenstück die Mechanik der Fluide gelten kann, stellt die allgemeine Grundlage der Physik dar und bildet daher fast immer den Beginn physikalischer Studienbücher und Vorlesungsreihen.
Mechanik fester Körper ist dementsprechend auch der Titel mehrerer Lehrbücher, die seit Beginn des 20. Jahrhunderts publiziert wurden. Zu den bekanntesten Autoren zählen Heinz Parkus (TU Wien) und Siegfried Heitz (Universität Bonn).
Die meisten Lehrbücher gliedern das Fachgebiet in die Bereiche
- Statik (u. a. Bezugs- und Kraftsysteme, Massengeometrie, Gleichgewicht, stabförmige Festkörper, Fachwerke, Reibungsgesetze),[1]
- Festigkeitslehre (Zug- und Biegeversuche, Spannungsverteilung, Biegelinie, Torsion; Elastizitätstheorie, Plastizität, Rheologie, Härte, Dichte, Baumechanik[1] usw.),
- Kinematik und Dynamik (Winkel- bzw. Geschwindigkeitsvektor, Beschleunigung, Ruck, Momente usw., Kinetische Grundgleichung, Schwerpunkt- und Drallsatz, Keplersche und Fallgesetze, Eulersche Kreiseltheorie usw.; Gravitation, Arbeit, Leistung, Bewegungsenergie, Schwingungen, Stoßvorgänge).

固体物理学是凝聚态物理学中最大的分支。它研究的对象是固体,特别是原子排列具有周期性结构的晶体。固体物理学的基本任务是从微观上解释固体材料的宏观物理性质,主要理论基础是非相对论性的量子力学,还会使用到电动力学、统计物理中的理论。主要方法是应用薛定谔方程来描述固体物质的电子态,并使用布洛赫波函数表达晶体周期性势场中的电子态。在此基础上,发展了固体的能带论,预言了半导体的存在,并且为晶体管的制造提供理论基础。
Die Festkörperphysik (häufig abgekürzt: FKP) befasst sich mit der Physik von Materie im festen Aggregatzustand. Sie gehört thematisch zur Physik der kondensierten Materie und umgekehrt.[1] Von besonderer Bedeutung sind dabei kristalline Festkörper. Das sind solche, die einen translationssymmetrischen (periodischen) Aufbau aufweisen, da diese Translationssymmetrie die physikalische Behandlung vieler Phänomene drastisch vereinfacht oder erst ermöglicht. Daher erfolgt die Anwendung des Modells des idealen Kristallgitters häufig auch dann, wenn die Bedingung der Periodizität nur sehr eingeschränkt, zum Beispiel nur sehr lokal erfüllt ist. Die Abweichung von der strengen Periodizität wird dann durch Korrekturen berücksichtigt.

Eine relationale Datenbank ist eine digitale Datenbank, die zur elektronischen Datenverwaltung in Computersystemen dient und auf einem tabellenbasierten relationalen Datenbankmodell beruht. Grundlage des Konzeptes relationaler Datenbanken ist die Relation. Sie stellt eine mathematische Beschreibung einer Tabelle dar und ist ein im mathematischen Sinn wohldefinierter Begriff; siehe Datenbankrelation. Operationen auf diesen Relationen werden durch die relationale Algebra bestimmt.
Das zugehörige Datenbankmanagementsystem wird als relationales Datenbankmanagementsystem oder RDBMS (Relational Database Management System) bezeichnet. Zum Abfragen und Manipulieren der Daten wird überwiegend die Datenbanksprache SQL (Structured Query Language) eingesetzt, deren theoretische Grundlage die relationale Algebra ist.
Das relationale Datenbankmodell wurde 1970 von Edgar F. Codd erstmals vorgeschlagen und ist bis heute trotz einiger Kritikpunkte ein etablierter Standard für Datenbanken.
关系数据库(英语:Relational database),是建立在关系模型基础上的数据库,借助于集合代数等数学概念和方法来处理数据库中的数据。现实世界中的各种实体以及实体之间的各种联系均用关系模型来表示。关系模型是由埃德加·科德于1970年首先提出的,并配合“科德十二定律”。现如今虽然对此模型有一些批评意见,但它还是数据存储的传统标准。标准数据查询语言SQL就是一种基于关系数据库的语言,这种语言执行对关系数据库中数据的检索和操作。
关系模型由关系数据结构、关系操作集合、关系完整性约束三部分组成。
Inertial Confinement Fusion: How to Make a Star
The idea for the National Ignition Facility (NIF) grew out of the decades-long effort to generate fusion burn and gain in the laboratory. Current nuclear power plants, which use fission, or the splitting of atoms to produce energy, have been pumping out electric power for more than 50 years. But achieving nuclear fusion burn and gain has not yet been demonstrated to be viable for electricity production. For fusion burn and gain to occur, a special fuel consisting of the hydrogen isotopes deuterium and tritium must first “ignite.” A primary goal for NIF is to achieve fusion ignition, in which the energy generated from the reaction outstrips the rate at which x-ray radiation losses and electron conduction cool the implosion.
All of the energy of NIF’s 192 beams is directed inside a gold cylinder called a hohlraum, which is about the size of a dime. A tiny capsule inside the hohlraum contains atoms of deuterium (hydrogen with one neutron) and tritium (hydrogen with two neutrons) that fuel the ignition process.
NIF was designed to produce extraordinarily high temperatures and pressures—tens of millions of degrees and pressures many billion times greater than Earth’s atmosphere. These conditions currently exist only in the cores of stars and planets and in nuclear weapons. In a star, strong gravitational pressure sustains the fusion of hydrogen atoms. The light and warmth that we enjoy from the sun, a star 93 million miles away, are reminders of how well the fusion process works and the immense energy it creates.
Replicating the extreme conditions that foster the fusion process has been one of the most demanding scientific challenges of the last half-century. Physicists have pursued a variety of approaches to achieve nuclear fusion in the laboratory and to harness this potential source of unlimited energy for future power plants.
See How ICF Works for a more detailed description of inertial confinement fusion.
Recipe for a Small Star
- Take a hollow, spherical plastic capsule about two millimeters in diameter (about the size of a small pea)
- Fill it with 150 micrograms (less than one-millionth of a pound) of a mixture of deuterium and tritium, the two heavy isotopes of hydrogen.
- Take a laser that for about 20 billionths of a second can generate 500 trillion watts—the equivalent of five million million 100-watt light bulbs.
- Focus all that laser power onto the surface of the capsule.
- Wait ten billionths of a second.
- Result: one miniature star.
In this process the capsule and its deuterium–tritium fuel will be compressed to a density 100 times that of solid lead, and heated to more than 100 million degrees Celsius—hotter than the center of the sun. These conditions are just those required to initiate thermonuclear fusion, the energy source of stars.
By following our recipe, we would make a miniature star that lasts for a tiny fraction of a second. During its brief lifetime, it will produce energy the way the stars and the sun do, by nuclear fusion. Our little star will produce ten to 100 times more energy than we used to ignite it.
Unter der Bezeichnung photoelektrischer Effekt (auch lichtelektrischer Effekt oder kurz Photoeffekt) werden drei nah verwandte, aber unterschiedliche Prozesse der Wechselwirkung von Photonen mit Materie zusammengefasst. In allen drei Fällen wird ein Elektron aus einer Bindung – z. B. in einem Atom oder im Valenzband oder im Leitungsband eines Festkörpers – gelöst, indem es ein Photon absorbiert. Die Energie des Photons muss dazu mindestens so groß wie die Bindungsenergie des Elektrons sein.
Man unterscheidet drei Arten des photoelektrischen Effekts:
- Als äußeren photoelektrischen Effekt (auch Photoemission oder Hallwachs-Effekt) bezeichnet man das Herauslösen von Elektronen aus einer Halbleiter- oder Metalloberfläche (siehe Photokathode) durch Bestrahlung. Dieser Effekt wurde bereits im 19. Jahrhundert entdeckt[1] und 1905 von Albert Einstein erstmals gedeutet, wobei er den Begriff des Lichtquants einführte.
- Der innere photoelektrische Effekt tritt in Halbleitern auf. Man unterscheidet zwei Fälle:
- Als Photoleitung bezeichnet man die Zunahme der Leitfähigkeit von Halbleitern durch Bildung von nicht aneinander gebundenen Elektron-Loch-Paaren.
- Darauf aufbauend ermöglicht der photovoltaische Effekt die Umwandlung von Licht- in elektrische Energie.
- Unter Photoionisation (auch atomarer Photoeffekt) versteht man die Ionisation einzelner Atome oder Moleküle durch Bestrahlung mit Licht genügend hoher Frequenz.
Die vollständige Absorption des Photons durch ein freies Elektron ist nicht möglich. Stattdessen findet ein Compton-Effekt statt, aus dem immer auch ein Photon geringerer Energie hervorgeht.
光电效应(英语:Photoelectric Effect)是指光束照射物体时会使其发射出电子的物理效应。发射出来的电子称为“光电子”。[1]:1060-1063[2]:1240-1246
1887年,德国物理学家海因里希·赫兹发现,紫外线照射到金属电极上,可以帮助产生电火花。[3]1905年,阿尔伯特·爱因斯坦发表论文《关于光产生和转变的一个启发性观点》,给出了光电效应实验数据的理论解释。爱因斯坦主张,光的能量并非均匀分布,而是负载于离散的光量子(光子),而这光子的能量和其所组成的光的频率有关。这个突破性的理论不但能够解释光电效应,也推动了量子力学的诞生。由于“他对理论物理学的成就,特别是光电效应定律的发现”,爱因斯坦获颁1921年诺贝尔物理学奖。[4]
在研究光电效应的过程中,物理学者对光子的量子性质有了更加深入的了解,这对波粒二象性概念的提出有重大影响。[2]:1240-1246除了光电效应以外,在其它现象里,光子束也会影响电子的运动,包括光电导效应、光生伏打效应、光电化学效应。
根据波粒二象性,光电效应也可以用波动概念来分析,完全不需用到光子概念。威利斯·兰姆与马兰·斯考立(Marlan Scully)于1969年使用半经典方法证明光电效应,这方法将电子的行为量子化,又将光视为纯粹经典电磁波,完全不考虑光是由光子组成的概念。