漢德百科全書 | 汉德百科全书

       
Chinese — German
Catalog Science and technology

Theodor Wolfgang Hänsch
Theodor Wolfgang Hänsch (* 30. Oktober 1941 in Heidelberg) ist ein deutscher Physiker und Hochschullehrer. Er ist Direktor am Max-Planck-Institut für Quantenoptik in Garching bei München. Er gilt als einer der Pioniere der Laserspektroskopie. Gemeinsam mit John Lewis Hall und Roy J. Glauber (beide USA) wurde er im Dezember 2005 mit dem Nobelpreis für Physik ausgezeichnet.
This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
Ultra-Hochspannungs-Gleichstrom-Übertragung,UHGÜ/Ultra High Voltage Direct Current,UHVDC
ab 1000kV/用1000千伏及以上的电压输送电能
/assets/contentimages/Te20Gao20Ya20Shu20Dian20.jpg

 

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
Alternative Fuels Data Center,AFDC

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
Tian Gong Kai Wu - Erschließung der Arbeiten der Natur
《天工开物》是中国古代一部综合性的科学技术著作,有人也称它是一部百科全书式的著作。本书初刊于1637年(明崇祯十年),作者是明朝发明家宋应星。

   /assets/contentimages/Tian20Gong20Kai20Wu20.jpeg 

 

 

 

 

 

 

 

 

 

 

 

 

Ein wichtiges Werk, das am Ende der Ming-Zeit von einem gewissen Song Yingxing verfaßt wurde, ist das »Tian-gong kai-wu« (=Erschließung der Arbeiten der Natur). In diesem Werk sind die Produktionsmethoden sowie die technischen Herstellungs- und Bearbeitungsverfahren einer Vielzahl von Bodenschätzen, natürlichen und künstlichen Produkten, zum Teil mit interessanten graphischen Darstellungen, beschrieben. Dieses Werk ist vor allem deshalb von großer Bedeutung, weil es uns einen Überblick über den Stand der Technologie im China des 17. Jahrhunderts vermittelt, also gerade zu einem Zeitpunkt, in dem erstmals naturwissenschaftliche und technische Kenntnisse aus dem Westen in größerem Umfang nach China gelangten.

《天工开物》初刊于1637年(明崇祯十年),共三卷十八篇,全书收录了农业、手工业,诸如机械、砖瓦、陶瓷、硫磺、烛、纸、兵器、火药、纺织、染色、制盐、采煤、榨油等生产技术。
《天工开物》是世界上第一部关于农业和手工业生产的综合性著作,是中国古代一部综合性的科学技术著作,有人也称它是一部百科全书式的著作,作者是明朝科学家宋应星。外国学者称它为“中国17世纪的工艺百科全书”。

 

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
Tianhe-2
TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P
https://www.net4info.eu/cpg/albums/userpics/Tian20He20Er20Hao20.jpg
Site: National Super Computer Center in Guangzhou
Manufacturer: NUDT
Cores: 4,981,760
Memory: 2,277,376 GB
Processor: Intel Xeon E5-2692v2 12C 2.2GHz
Interconnect: TH Express-2
Performance
Linpack Performance (Rmax) 61,444.5 TFlop/s
Theoretical Peak (Rpeak) 100,679 TFlop/s
Nmax 9,773,000
Power Consumption
Power: 18,482.00 kW (Submitted)
Power Measurement Level: 1
Measured Cores: 4,981,760
Software
Operating System: Kylin Linux
Compiler: icc
Math Library: Intel MKL-11.0.0
MPI: MPICH2 with a customized GLEX channel
 
This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
Astrometrie/Astrometry
Die Astrometrie (gr. ἄστρον = Stern und μέτρον, métron = Maß, Messen) ist der geometrische Teilbereich der Astronomie und als solcher das Gegenstück zur Astrophysik. Sie wird auch Positionsastronomie oder klassische Astronomie genannt und umfasst die Messung und Berechnung von Gestirnspositionen (Sternörtern) und ihren Bewegungen in genau definierten Bezugsystemen.

Die Astrometrie (gr. ἄστρον = Stern und μέτρον, métron = Maß, Messen) ist der geometrische Teilbereich der Astronomie und als solcher das Gegenstück zur Astrophysik. Sie wird auch Positionsastronomie oder klassische Astronomie genannt und umfasst die Messung und Berechnung von Gestirnspositionen (Sternörtern) und ihren Bewegungen in genau definierten Bezugsystemen. Damit ist sie die Grundlage vieler astronomischer Forschungen und insbesondere der Himmelsmechanik. Bis zur Etablierung der Astrophysik, die um 1860 nach Erfindung der Spektroskopie begann, machten Astrometrie und Sphärische Astronomie den Großteil der gesamten Sternkunde aus.

Nach de Vegt ist Astrometrie die Wissenschaft vom geometrischen Aufbau des Universums (Ort, Bewegung und Entfernung der Gestirne) oder die Vermessung des Himmels. Gleichzeitig gibt sie eine Koordinaten-Grundlage für die Geodäsie – also die Vermessung der Erde.

天体测量学测天学(astrometry)是天文学中最古老也是最基础的一个分支,主要以测量恒星的位置和其他会运动天体的距离和动态。他是传统科学中的一个子科目,后来发展出以定性研究为主体的位置天文学。天体测量学的历史,在西方可以追溯到喜帕恰斯,他编辑了第一本的星表,列出了肉眼可见的恒星并发明了到今天仍沿用的视星等的尺标。现代的天体测量学建立在白塞耳基本星表上,这是以布拉德雷在公元1750至1762年间的测量为基础,提供了3,222颗恒星的平均位置。

除了提供天文学家基本的参考座标系作为他们在天文观测报告之用外,天体测量学也是天体力学恒星动力学星系天文学等学门的基础。在观测天文学中,天文测量的技术协助鉴别出各种天体独特的运动。他的设备也用于守时(keeping time),因为协调世界时(UTC)是在确切观测地球自转的基础上,以闰秒的调整与原子时间取得协调与一致。天体测量学也与极端复杂的宇宙距离尺度有所关联,因为他用于建立视差以估计银河系内恒星的距离。

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
Himmelsmechanik/Celestial mechanics
Die Himmelsmechanik beschreibt als Teilgebiet der Astronomie die Bewegung astronomischer Objekte aufgrund physikalischer Theorien mit Hilfe mathematischer Modellierung. So ist die Beschreibung der Planetenbewegung durch die Keplerschen Gesetze eine mathematische Modellierung, die in der Folge durch die Newtonsche Mechanik theoretisch begründet wurde.

Die Himmelsmechanik beschreibt als Teilgebiet der Astronomie die Bewegung astronomischer Objekte aufgrund physikalischer Theorien mit Hilfe mathematischer Modellierung. So ist die Beschreibung der Planetenbewegung durch die Keplerschen Gesetze eine mathematische Modellierung, die in der Folge durch die Newtonsche Mechanik theoretisch begründet wurde. Der Begriff Astrodynamik wird manchmal synonym gebraucht, bezeichnet aber speziell die Bewegung künstlicher Körper im Gravitationsfeld.[1][2] Das Erstellen tabellarischer Übersichten der Bewegung astronomischer Objekte wird als Ephemeridenrechnung bezeichnet.

Die Himmelsmechanik beruht im Wesentlichen auf dem Gravitationsgesetz und einer genauen Definition von Koordinaten- und Zeitsystemen. Als Fachgebiet hängt sie eng mit der Astrometrie zusammen.

天体力学是天文学的一个分支,涉及天体运动万有引力的作用,是应用物理学,特别是牛顿力学,研究天体的力学运动和形状。研究对象是太阳系内天体与成员不多的恒星系统。以牛顿、拉格朗日与航海事业发达开始,伴着理论研究的成熟而走向完善的。

天体力学可分六个范畴:摄动理论、数值方法、定性理论、天文动力学、天体形状与自转理论、多体问题(其内有二体问题)等。

天体力学也用于编制天体历,而1846年以摄动理论发现海王星也是代表着天体力学发展的标志之一。天体力学的卓越成就是发展出航天动力学,研究和发展出各式人造卫星轨道

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
Astrophysik/Astrophysics
Die Astrophysik befasst sich mit den physikalischen Grundlagen der Erforschung von Himmelserscheinungen und ist ein Teilgebiet der Astronomie. Als Erweiterung der klassischen Astronomie (vor allem aus Astrometrie und Himmelsmechanik bestehend) macht sie heute große Bereiche der astronomischen Forschung aus.

Die Astrophysik befasst sich mit den physikalischen Grundlagen der Erforschung von Himmelserscheinungen und ist ein Teilgebiet der Astronomie. Als Erweiterung der klassischen Astronomie (vor allem aus Astrometrie und Himmelsmechanik bestehend) macht sie heute große Bereiche der astronomischen Forschung aus.

天体物理学(英语:astrophysics),又称天文物理学,是研究宇宙的物理学,这包括星体的物理性质(光度密度温度化学成分等等)和星体与星体彼此之间的相互作用。应用物理理论与方法,天体物理学探讨恒星演化恒星结构星际物质宇宙微波背景太阳系的起源和许多跟宇宙学相关的问题[1]。由于天体物理学是一门很广泛的学问,天文物理学家通常应用很多不同的学术领域,包括力学电磁学统计力学量子力学相对论粒子物理学以及原子分子与光物理学等等。由于近代跨学科的发展,与化学、生物、历史、计算机、工程、古生物学、考古学、气象学等学科的混合,天体物理学目前大小分支300—500门主要专业分支,成为物理学当中最前沿的庞大领导学科,是引领近代科学及科技重大发展的前导科学,同时也是历史最悠久的古老传统科学。

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
Äquatoreal
 
 
/assets/contentimages/Aquatoreal.jpg
 
 
This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
Astronomie/Astronomy
Die Astronomie oder Sternkunde ist die Wissenschaft der Gestirne. Sie erforscht mit naturwissenschaftlichen Mitteln die Positionen, Bewegungen und Eigenschaften der Objekte im Universum, also der Himmelskörper (Planeten, Monde, Asteroiden, Sterne einschließlich der Sonne, Sternhaufen, Galaxien und Galaxienhaufen), der interstellaren Materie und der im Weltall auftretenden Strahlung. Darüber hinaus strebt sie nach einem Verständnis des Universums als Ganzes, seiner Entstehung und seines Aufbaus.

天文学是一门研究天体天文现象自然科学。它使用数学物理化学来解释它们的起源和演化。天文学的研究对象包括:行星卫星恒星星云星系彗星等天体,以及超新星爆炸、伽马射线暴类星体耀变体脉冲星宇宙微波背景辐射等天文现象。更通俗地说,天文学研究起源于地球大气层之外的一切事物。宇宙学是天文学的一个分支,从整体上研究宇宙[1]

Die Astronomie (altgriechisch ἀστρονομία astronomía;[1] von ἄστρον ástron ‚Stern‘ und νόμος nómos ‚Gesetz‘) oder Sternkunde ist die Wissenschaft der Gestirne. Sie erforscht mit naturwissenschaftlichen Mitteln die Positionen, Bewegungen und Eigenschaften der Objekte im Universum, also der Himmelskörper (Planeten, Monde, AsteroidenSterne einschließlich der Sonne, SternhaufenGalaxien und Galaxienhaufen), der interstellaren Materie und der im Weltall auftretenden Strahlung. Darüber hinaus strebt sie nach einem Verständnis des Universums als Ganzes, seiner Entstehung und seines Aufbaus.

Obwohl die Astronomie nur an wenigen Schulen ein Unterrichtsfach ist, finden ihre Forschungsergebnisse in der Öffentlichkeit viel Interesse; als Amateurastronomie ist sie ein weit verbreitetes Hobby. Dies hängt einerseits mit dem „erhebenden“ Eindruck zusammen, den der Sternhimmel auch bei freisichtiger Beobachtung macht, andererseits mit ihrer thematischen Vielfalt, der Berührung philosophischer Fragen und der Verbindung zur Raumfahrt.

Im Gegensatz zu früheren Zeiten wird die Astronomie als Naturwissenschaft heute streng abgegrenzt von der Astrologie, die aus Stellung und Lauf der Gestirne auf irdische Geschehnisse schließen will. Die Abgrenzung erfolgt auch, da die Astrologie eine Pseudowissenschaft ist – während die Astronomie auf empirischer Basis die Beschaffenheit, Bewegungen und Beziehungen von Himmelskörpern untersucht. Dennoch werden, wohl wegen der Ähnlichkeit beider Bezeichnungen, Astrologie und Astronomie von Laien nicht selten verwechselt.

An den Universitäten wurde die Astronomie um etwa 1800 zu einer eigenen Studienrichtung, wird heute aber oft dem Physikstudium zugeordnet. In der deutschen Hochschulpolitik wird sie seit 2018 gemeinsam mit der Astrophysik nicht mehr als Kleines Fach, sondern als mittelgroßes Fach eingestuft.

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
Almagest
Almagest (altgriechisch μαθηματική σύνταξις mathematiké sýntaxis, arabisch المجسطي, DMG al-maǧisṭī) nennt man eines der Hauptwerke der antiken Astronomie, das auf den Gelehrten Claudius Ptolemäus zurückgeht. Das Werk wurde im 2. Jahrhundert n. Chr. in Alexandria (heute Ägypten) geschrieben, das damals zum römischen Kaiserreich unter Hadrian gehörte.

天文学大成》(拉丁语Almagestum),又译《至大论》,古希腊托勒密在约公元140年编纂的一部数学、天文学专著,提出了恒星和行星的复杂运动路径。直到中世纪文艺复兴早期,该书提出的地心说模型被伊斯兰和欧洲社会接受长达一千多年。天文学大成是古希腊天文学最重要的信息来源。该书对数学学者也很有价值,因为它记载了古希腊数学家喜帕恰斯已经遗失的著作。喜帕恰斯论述了三角法,但是该著作已经丢失,数学家大体上使用托勒密的书籍来当做喜帕恰斯著作和古希腊三角法的资料。

该书的古希腊语原名《数学论》(Μαθηματικἠ Σύνταξις,Mathematikē Sýntaxis),9世纪阿拉伯语译成《المجسطي》(al-majisṭī,字面意思为“最宏大的”,即现代中文译名《天文学大成》的来由),因为古希腊语原文在欧洲散佚,1175年的拉丁语译本译自阿拉伯语,采用了阿拉伯语的译名,这译名自此在全欧通行。

Almagest (altgriechisch μαθηματική σύνταξις mathematiké sýntaxis, arabisch المجسطي, DMG al-maǧisṭī) nennt man eines der Hauptwerke der antiken Astronomie, das auf den Gelehrten Claudius Ptolemäus zurückgeht. Das Werk wurde im 2. Jahrhundert n. Chr. in Alexandria (heute Ägypten) geschrieben, das damals zum römischen Kaiserreich unter Hadrian gehörte. Üblicherweise wird der Sternkatalog auf das Jahr 137 n. Chr. datiert,[1][2][3] wobei die Teile (Bücher) des Gesamtwerks verschiedenen Alters sein könnten. Der Titel lautete griechisch Mathematike Syntaxis („Mathematische Zusammenstellung“; von μαθηματικός „zum Lernen gehörig, wissbegierig“), da im römischen Reich weiterhin Altgriechisch die lingua franca der Wissenschaft war.

Dieses Buch gilt als umfassendste und kompetenteste Darstellung des astronomischen Systems der griechisch-römischen Antike. Es ist ein Kompendium, also Zusammenstellung verschiedener Komponenten von Wissen in einem umfassenden Werk, das (wie der Titel sagt) Lehrbuch und für spätere Forschende auch Handbuch sein sollte. Es wurde während des gesamten kommenden Millenniums oft kopiert. Spätere Abschriften des hoch angesehenen Werkes trugen den Titel Megiste Syntaxis („Größte Zusammenstellung“), was als al-madschisti in die arabischen Übersetzungen übernommen wurde und von dort als Almagest in die lateinischen Übersetzungen und den heutigen Sprachgebrauch überging.[4] Im Gegensatz zu anderen Werken jener Zeit ist der Text des Almagest vollständig überliefert.

Der Almagest beruht auf dem geozentrischen ptolemäischen Weltbild und arbeitet dessen astronomische Details aus. Im Gegensatz zum eher physikalisch geprägten Werk Hypotheseis ton planomenon („Hypothesen über die Planeten“) des Ptolemäus steht im Almagest die mathematische Beschreibung der Bahnen der einzelnen Himmelskörper im Vordergrund. Wegen seiner exakten mathematischen Modellierung der Himmelsbewegungen und der dadurch eröffneten Möglichkeit, diese recht genau vorauszuberechnen, entwickelte er sich zum Standardwerk der mathematischen Astronomie vom 2. bis zum 17. Jahrhundert.

Aufgrund der thematisch sehr umfassenden und systematisch gegliederten Darstellung, verdrängte der Almagest schon sehr früh alle anderen griechischen astronomischen Schriften. Ptolemäus systematisierte darin das gesamte antike Wissen über die Himmelsobjekte, nutzte dabei das hohe Niveau der griechischen Mathematik und bettete sein System in die aristotelische Physik ein. Heute gilt das Werk als Höhepunkt und Abschluss der antiken Astronomie.

Neben dem Werk selbst sind auch antike Kommentare dazu überliefert, insbesondere von Pappos und Theon von Alexandria.

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.
Hiroshi Amano
Hiroshi Amano (japanisch 天野 浩, Amano Hiroshi; * 11. September 1960 in Hamamatsu) ist ein japanischer Physiker, der im Jahr 1989 erstmals blaue Leuchtdioden, basierend auf dem p-n-Übergang mit dem Halbleitermaterial Galliumnitrid (GaN), herstellte. Im Jahr 2014 wurde er hierfür gemeinsam mit Isamu Akasaki und Shuji Nakamura mit dem Nobelpreis für Physik ausgezeichnet.

https://www.net4info.de/photos/cpg/albums/userpics/10001/Hiroshi_Amano.jpg

Hiroshi Amano (japanisch 天野 浩, Amano Hiroshi; * 11. September 1960 in Hamamatsu) ist ein japanischer Physiker, der im Jahr 1989 erstmals blaue Leuchtdioden, basierend auf dem p-n-Übergang mit dem Halbleitermaterial Galliumnitrid (GaN), herstellte. Im Jahr 2014 wurde er hierfür gemeinsam mit Isamu Akasaki und Shuji Nakamura mit dem Nobelpreis für Physik ausgezeichnet.

天野浩(日语:天野 浩あまの ひろし Amano Hiroshi,1960年9月11日—),日本工程学家,名古屋大学工学博士,美国国家工程院外籍院士,日本学士院会员(院士)[1],专长半导体器件制造。现任名古屋大学特别教授,荣获文化勋章,并被表彰为文化功劳者

2014年凭借“发明高亮度蓝色发光二极体,带来了节能明亮的白色光源”与赤崎勇中村修二共同获得诺贝尔物理学奖[2]

This image, video or audio may be copyrighted. It is used for educational purposes only. If you find it, please notify us byand we will remove it immediately.