
Deutsch-Chinesische Enzyklopädie, 德汉百科


Biomedizinische Datenwissenschaft ist ein multidisziplinäres Gebiet, das große Datenmengen nutzt, um biomedizinische Innovation und Entdeckung zu fördern. Biomedizinische Datenwissenschaft stützt sich auf verschiedene Bereiche, darunter Biostatistik, biomedizinische Informatik und maschinelles Lernen, mit dem Ziel, biologische und medizinische Daten zu verstehen. Sie kann als die Untersuchung und Anwendung der Datenwissenschaft zur Lösung biomedizinischer Probleme betrachtet werden. Moderne biomedizinische Datensätze weisen oft spezifische Merkmale auf, die ihre Analyse erschweren, darunter:
Große Anzahl von Merkmalen (manchmal Milliarden), die in der Regel viel größer sind als die Anzahl der Proben (in der Regel Dutzende oder Hunderte)
Verrauschte und fehlende Daten
Bedenken hinsichtlich des Datenschutzes (z. B. Vertraulichkeit elektronischer Gesundheitsdaten)
Erfordernis der Interpretierbarkeit durch Entscheidungsträger und Aufsichtsbehörden
Viele biomedizinische Datenforschungsprojekte wenden maschinelles Lernen auf solche Datensätze an, was die biomedizinische Datenforschung zu einem besonderen Bereich macht, auch wenn diese Merkmale auch in vielen anderen datenwissenschaftlichen Anwendungen zu finden sind.
Die bioorthogonale Markierung umfasst biochemische Methoden zur Molekülmarkierung, bei denen eine selektive chemische Reaktion erfolgt, möglichst ohne die biologischen Prozesse in einer Zelle zu stören.[1][2][3] Die bioorthogonale Markierung ist eine Kombination der metabolischen Markierung und einer folgenden selektiven Reaktion, die in vivo oder in vitro verwendet wird. Durch die bioorthogonale Markierung können in vivo Signalmoleküle (Reportermoleküle) an das zu markierende Molekül gekoppelt werden, die nicht durch zelluläre Reaktionen zu erzeugen sind, z. B. ein synthetisches Fluorophor.[4] Carolyn Bertozzi erhielt für ihre Beiträge zur bioorthogonalen Markierung und Click-Chemie den Nobelpreis für Chemie im Jahr 2022.
生物正交化学(英語:Bioorthogonal chemistry)指能够在生物系统中发生而且不干扰内源性生物化学过程的化学反应。[1][2][3] 该术语是由美国化学家卡罗琳·贝尔托西于2003年创造的反应。[4]生物正交反应使得对生物体内的生物分子(如糖类、蛋白质[5]和脂类[6]等)的实时研究成为可能。在目前,已发展了大量满足生物正交性的化学偶联策略,如叠氮化合物与环炔烃的1,3-偶极环加成反应(又称无铜点击化学)[7]、硝酮与环炔烃的反应[8]、醛或酮形成肟或腙的反应[9]、四嗪与环状烯烃或环状炔烃的狄尔斯-阿尔德反应[10]、基于异氰化物的点击反应[11],以及四环烷偶联反应[12]。
生物正交化学的使用通常分两个步骤进行。 第一步,用生物正交官能团(化学报告者)修饰细胞底物并将其引入细胞; 底物包括代谢物、酶抑制剂等。化学报告者分子不得显着改变底物的结构,以免影响其生物活性。 第二步,引入含有互补官能团的探针来反应并标记底物。
尽管已经开发出有效的生物正交反应(例如无铜点击化学),但新反应的开发仍在继续产生正交标记方法,以允许在同一生物系统中使用多种标记方法。 卡罗琳·贝尔托西因其对点击化学和生物正交化学的发展而荣获2022年诺贝尔化学奖[13]。
Biophotonik ist die allgemeine Bezeichnung für Anwendungen der Photonik in der Biologie.
Biophotonik ist demnach der Sammelbegriff für alle Techniken, die sich mit der Wechselwirkung von organischem Material und Photonen, den Lichtquanten, befassen. Das betrifft Emission, Absorption, Reflexion, Streuung (Physik) oder anderweitige Wechselwirkungen von elektromagnetischer Strahlung des sichtbaren, nahen infraroten und ultravioletten Bereiches mit lebenden Organismen oder organischem Material.
Hierzu gehören unter anderem die Erforschung verschiedener Lumineszenz-Effekte biologischen Gewebes oder mikroskopische Verfahren wie der Laser-Scanning-Mikroskopie oder auch medizinische Verfahren wie die photodynamische Therapie. Andere Bereiche der Biophotonik verwenden Licht quasi als Miniatur-Werkzeug: Mit optischen Pinzetten können Zellen und Zellbestandteile gehalten und bewegt werden, mit dem Nano-Laserskalpell Schnitte innerhalb einer Zelle durchgeführt werden. Weit verbreitet ist heute bereits die LASIK-Methode zur Korrektur von Fehlsichtigkeiten am menschlichen Auge.
生物光子学是通过光学技术研究生物分子,细胞和组织的一门学科,是光子学领域的分支之一[1]。 生物光子是指生物新陈代谢时处于高能态的分子向低能态跃迁时辐射出来的粒子。生物光子辐射来自生物分子从高能态向低能态的跃迁,它是一个发生在“分子层次”的生命现象,这意味着生物光子辐射携带着有关生物分子组成和结构的信息。生物系统在分子层次的变化,能引起系统生物光子辐射行为的改变。
Die Biophysik ist eine interdisziplinäre Wissenschaft, die zum einen versucht, Prozesse in biologischen Systemen mit Hilfe der Gesetze der Physik und ihrer Messmethoden zu untersuchen und zu beschreiben, zum anderen sich aber auch mit der gezielten Neu- und Weiterentwicklung physikalischer Methoden zur Untersuchung biologischer Prozesse beschäftigt. Auch die Bionik kann der Biophysik zugerechnet werden. Kurz gesagt ist die Biophysik die Anwendung der Physik auf Biologisches und umgekehrt. In der deutschen Hochschullandschaft gilt die Biophysik als Kleines Fach.[1]
Fragestellungen und Probleme ergeben sich neben der Biologie auch aus der medizinischen Forschung und Anwendung. Biophysikalische Forschung erfordert somit die enge Zusammenarbeit von Wissenschaftlern der Disziplinen Physik, Biologie, Chemie, Medizin und deren Grenzwissenschaften. Aus diesem Grund ist die Biophysik an den Universitäten nicht zwangsläufig dem Fachbereich Physik zugeordnet. Wurde die Biophysik zunächst ausschließlich von Wissenschaftlern der o. g. Disziplinen (insbesondere Physikern) betrieben, wurden mittlerweile an mehreren deutschen Universitäten eigenständige Biophysikstudiengänge eingerichtet.
生物物理学(英语:Biophysics)是生物学和物理学的交叉学科,研究生物的物理特性。生物物理涵盖各级生物组织,从分子尺度到整个生物体和生态系统。它的研究范围有时会与生理学、生物化学、纳米技术、生物工程、农业物理学、细胞生物学和系统生物学有显著的重叠。它被认为是生物学和物理学之间的桥梁。物理学和生物学在两方面有联系:一方面,生物为物理提供了具有物理性质的生物系统,另一方面,物理为生物提供了解决问题的工具。
Biowissenschaften (griechisch βιός bios, deutsch ‚Leben‘), Lebenswissenschaften oder Life Sciences sind Forschungsrichtungen und Ausbildungsgänge, die sich mit Prozessen oder Strukturen von Lebewesen beschäftigen oder an denen Lebewesen beteiligt sind. Außer der Biologie umfassen sie auch verwandte Bereiche wie Medizin, Biomedizin, Pharmazie, Biochemie, Chemie, Molekularbiologie, Biophysik, Bioinformatik, Humanbiologie, aber auch Agrartechnologie, Ernährungswissenschaften und Lebensmittelforschung, bis hin zu wissenschaftlicher Aufarbeitung biogener natürlicher Ressourcen und Biodiversitätsforschung. Das Methodenspektrum kann fast das gesamte naturwissenschaftliche Geräte- und Analyseninventar umfassen und auch in Bereiche der Human- und Sozialwissenschaften hineinreichen. Die methodische Arbeit und das theoretische Rüstzeug sind demzufolge häufig stark interdisziplinär, haben aber einen klaren Bezug zu Lebewesen und insbesondere zum Menschen. Damit bildet es eine ähnliche moderne wissenschaftliche Großgruppe wie beispielsweise die Humanwissenschaften.
生命科学包括所有对生物(微生物、动物、植物等)进行研究的科学领域,也包括对相关领域的考量,比如生物伦理学。尽管目前生物学仍然是生命科学的中心,分子生物学和生物技术上的进展,使得生命科学正成为一个专精化、多学科交叉的领域[1]。
生命科学的某些子学科对特定类型的生物进行研究。比如动物学研究动物,植物学研究植物。也有一些生命科学的子学科研究生物体在某些方面的共性,比如解剖学和遗传学。另外,像生物工程这样的学科则更专注于利用生物体研究出尖端技术。而生命科学的另一分支,神经科学则想要探明意识、思想、情感、记忆、语言等人类大脑的生化、基因以至演化上的本质。
生命科学对提高人类的生活品质有很大助益。目前,生命科学已在医疗、农业、保健、食品工业、制药等行业得到了广泛应用。 生命科学的不同研究领域之间有很大的重叠。

比罗·拉斯洛·约瑟夫(匈牙利语:Bíró László József,1899年9月29日—1985年10月24日),书写工具圆珠笔开发者。[1]出生于布达佩斯。
不同于历史上第一个发明出圆珠笔的美国人约翰·J·劳德之成品是用在书写较粗糙的材质表面,比罗·拉斯洛的圆珠笔可在一般纸张上便利使用,并且有取得专利而在商业市场上获得成功。
László József Bíró [ˈlaːsloː ˈjoːʒɛf ˈbiːroː], geboren als László József Schweiger (* 29. September 1899 in Budapest, Ungarn; † 24. Oktober 1985 in Buenos Aires, Argentinien) war ein ungarischer Erfinder. Er ließ sich als Erster einen kommerziell erfolgreichen Kugelschreiber patentieren.
布莱兹‧帕斯卡(Blaise Pascal,1623年6月19日—1662年8月19日),法国神学家、哲学家、数学家、物理学家、化学家、音乐家、教育家、气象学家。帕斯卡早期进行自然和应用科学的研究,对机械计算器的制造和流体的研究作出重要贡献,扩展托里切利的工作,澄清了压强和真空的概念。帕斯卡还有力地为科学方法辩护。数学上,帕斯卡促成了两个重要的新研究领域。他16岁写出一篇题为射影几何的论文,1654年开始与皮埃尔·德·费马通信,讨论概率论,深刻影响了现代经济学和社会科学的发展。
1654年末一次信仰上的神秘经历后,他离开数学和物理学,专注于沉思和神学与哲学写作。他是坚定的詹森教派信徒,人文思想大受蒙田影响。宗教论战之作《致外省人书》(Lettres provinciales)被奉为法文写作的典范,身后其笔记本被编为《思想录》。
Blaise Pascal [blɛz paskal] (* 19. Juni 1623 in Clermont-Ferrand; † 19. August 1662 in Paris) war ein französischer Mathematiker, Physiker, Literat und christlicher Philosoph.

博谢纪念奖(英語:Bôcher Memorial Prize),或简称博谢奖(英語:Bôcher Prize),是分析数学领域的著名国际奖项,是分析数学分支的最高奖之一。
Der Bôcher Memorial Prize ist ein von der American Mathematical Society vergebener Preis für bemerkenswerte Veröffentlichungen auf dem Gebiet der Analysis in den vorangegangenen sechs Jahren. Zurzeit wird er alle drei Jahre von der American Mathematical Society vergeben. Nur Mitglieder der AMS oder Personen, deren Beiträge in bekannten US-amerikanischen Fachzeitschriften erschienen sind, können den Preis erhalten, der zurzeit mit 5.000 US$ dotiert ist.
Erstmals wurde der Preis 1923 verliehen und ist damit der älteste von der AMS verliehene Preis. Er ist benannt nach Maxime Bôcher (* 1867; † 1918), einem Mathematikprofessor und Präsidenten der AMS (1909–1910).